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Taylor (1953, 1954a) showed that, when a cloud of solute is injected into a pipe 
through which a solvent is flowing, it spreads out, so that the distribution of 
concentration C is eventually a Gaussian function of distance along the pipe axis. 
This paper is concerned with the approach to this final form. An asymptotic series 
is derived for the distribution of concentration based on the assumption that the 
diffusion of solute obeys Fick’s law. The first term is the Gaussian function, and 
succeeding terms describe the asymmetries and other deviations from normality 
observed in practice. The theory is applied to Poiseuille flow in a pipe of radius a 
and it is concluded that three terms of the series describe C satisfactorily if 
Dt/a2 > 0.2 (where D is the coefficient of molecular diffusion), and that the 
initial distribution of C has little effect on the approach to normality in most 
cases of practical importance. The predictions of the theory are compared with 
numerical work by Sayre (1968) for a simple model of turbulent open channel 
flow and show excellent agreement. The final section of the paper presents a 
second series derived from the first which involves only quantities which can be 
determined directly by integration from the observed values of G without 
knowledge of the velocity distribution or diffusivity. The latter series can be 
derived independently of the rest of the paper provided the cumulants of C tend 
to zero fast enough as t+m, and it is suggested, therefore, that the latter series 
may be valid in flows for which Pick’s law does not hold. 

1. Introduction 
This paper is concerned with the dispersion of a passive contaminant in a 

straight pipe of uniform cross-section, under the combined action of diffusion 
(molecular and/or turbulent) and advection with the fluid flowing along the pipe. 
It was shown by Taylor (1953,1954 a) that for large times the mean concentration 
of contaminant over the cross-section satisfies a diffusion equation with respect 
to axes moving with the discharge velocity. Thus contaminant which is initially 
in the form of a cloud disperses so that its mean concentration is eventually 
a Gaussian function of distance along the pipe axis. Experiments by Taylor and 
others have substantially confirmed these conclusions, provided that sufficient 
time has elapsed since injection of the contaminant (e.g. Taylor 1953, figure 7) .  
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The persistence of skewness and its causes 

However, many experimental curves (e.g. Taylor 1953, figure 6) are not com- 
pletely symmetric, because insufficient time has elapsed for asymmetries to be 
completely smoothed out. For cases in which the diffusion of the contaminant 
can be described by Fick’s law, Aris (1956) has shown theoretically that the 
absolute skewness of the mean concentration does tend to  zero, but only as t-a, 
where t is the time since injection. Thus, any asymmetry that is present at  any 
instant is likely to affect the observed concentration for a long time afterwards. 
There are at  least two causes of such asymmetry being present. 

First, the contaminant may be injected so that it is initially asymmetric. For 
example, the cloudof contaminant may have a long tail upstream or downstream. 
If the concentration of contaminant is C(x ,  y, z ,  t )  (where x measures distance 
along the axis, and y and z are co-ordinates in the cross-section), then the initial 
mean concentration will be asymmetric if v3 is initially different from zero, where, 
for n > 1. 

Thus, v,(t) is the nth integral moment of C. xg is the x co-ordinate of the centre of 
mass of the cloud of contaminant. 

Even if v3 is initially zero, it will, in general, rapidly become non-zero under the 
influence of advection with the fluid (which dominates over diffusion in the early 
stages of the dispersion; see Taylor 1953). Consider the simple model of turbulent 
flow in an open channel of depth h (figure 1 (u)),  in which the mean flow velocity 
is logarithmic, and, with respect to axes moving with the discharge velocity, has 
the form 

3 K (1 +log[), 

where us is the friction velocity and K is von K&rm&n’s constant. For a case when 
the cloud of contaminant is initially uniform over the depth and localized near 
x = 0, the concentration per unit width is approximately 

where Q is the volume of contaminant per unit width. The cross-sectional mean 
of the concentration, C(x, 0) ,  is then identical with Cfx, y, 0) ,  and is sketched 
schematically in figure 1 ( b ) .  It is of course symmetric in the axial direction. Now, 
initially the cloud disperses under the influence of advection, so that, until 
diffusion is important, - 

C(x,y, t )  = 52 6 [ x- y (1 +log ;)I. 
h 

Evidently, xg = 0, because of the choice of axes; and, by integrating, it is found 
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This is sketched schematically in figure 1 (c) and the profile is clearly asymmetric. 
It can easily be shown that 

The most natural non-dimensional measure of asymmetry is the absolute skew- 

A3 = v3/v2, 

v3 = - 2(u* t/K)3. 

(1.2) ness, A,, defined by 8 

which, for the present example, is equal to - 2. 

(4 Y 

f 

A 

(4 

x > x  
u*t - 
K 

FIGURE 1. Initial dispersion of cloud of contaminant in turbulcnt open-channel 
flow, show-ing the asymmetry caused by advection. 

Exceptionally, a particular velocity profile may be such that advection alone 
will not cause an initially symmetric distribution of concentration to become 
asymmetric. Poiseuille flow in a circular pipe of radius a is one example. The axial 
velocity referred to axes moving with the discharge velocity U has the form 

U (  1 - 2r2/a2), 

where r2 = y2 + z2. An initial distribution of concentration of the form 

C(X,  Y, z ,O)  = c ( ~ ,  0) = (&ha2) &x), 

where Q the total volume of contaminant, is changed by advection alone to the 
form shaded in figure 2 (a ) ,  viz. 

C(X, y, 2,  t )  = (&/7ru2) 6 [ X  - Ut( 1 - 2r2/a2)]. 
21-2 
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The corresponding value of 6 ( x ,  t )  is 

10 if 1x1 > Ut, 

if 1x1 < Ut. 
27ra2Ut 

This is symmetric (see figure 2 ( b ) )  because of the peculiar property of Poiseuille 
flow that the area of an annulus in which the velocity lies between two values 
u and u + 6u is independent of u and proportional to 6u (Lighthill 1966). However, 
this is modified by diffusion into an asymmetric form. For near the cross-section 
A A  (figure 2(a))  the presence of the wall means that diffusion transports fluid 
only inwards to a region where the velocity is greater than at the wall. Thus, the 
actual concentration near A A  is lower than that predicted by a theory in which 

- 
c 

X 

- ut Ut 
FIGURE 2.  Initial dispersion of cloud of contaminant in Poiscuille flow, showing tfhe 

asymmetry caused by diffusion and interaction with the pipe wall. 

diffusion is ignored. The same thing is true near CC. However, the decrease in 
concentration here can be expected to be less than at  A A ,  since, at cross-sections 
near to, but upstream of CC, some contaminant is diffused inwards to regions of 
higher velocity. Because the velocity gradient is zero on the pipe axis, the con- 
centration becomes fairly uniform near the centre of the pipe in the neighbour- 
hood of CC. This inward diffusion will therefore reduce, but not prevent, the 
lowering of the concentration at CC caused primarily by outward diffusion. 
Since the centre of gravity of the cloud of contaminant remains at  BB (its position 
is not affected by diffusion), the actual form of is likely t o  be asymmetric, of the 
type sketched schematically in figure 2 (c). 
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Because asymmetries and other deviations from normality are known to be 
rather persistent, it is important that the following two problems be investigated: 

(i) How does approach a Gaussian form as t+m? 
(ii) How does the initial distribution of C influence this approach? 

These questions are the motivation of the work in this paper. 

Possible theoretical approaclhes 

Attention will be given only to flows in which the diffusion of contaminant obeys 
Fick’s law, i.e. to all flows in which the flux of contaminant can be written 

- D K ( y ,  4 vc, 
where D is a constant with the dimensions of diffusivity, and 

cross- 
section 

where AS is the total area of the cross-section. It will also be assumed that D and K 
are independent of concentration. Throughout this paper, an overbar on a 
quantity will denote its mean over the cross-section as in (1.3). Since the pipe is 
straight, the fluid velocity can be written 

where U is a characteristic velocity, and 7 is zero because the axes used are 
moving with the discharge velocity. The equation governing the concentration 
is thus 

The boundary conditions on C are that 

ac 
K - = 0 on pipe walls, 

an 

since no contaminant flows through the walls, and that 

C+O as Ix]+m, (1.6) 

if the contaminant is injected in the form of a cloud.? There is also an initial 
condition of the form, 

An equation for 
using (1.5). This is 

C ( X ,  y, 2 , O )  = c y x ,  y, 2 ) .  (1.7) 

can be obtained by integrating (1.4) over the cross-section and 

a -  a 2 -  
= - U - V C + D - K C .  

aB 
at ax ax2 
- 

t The theory of this paper can be adapted without difficulty to cover the case of transition 
from a region of uniform concentration C,  to a region of uniform concentration C, for which 
the boundary condition (1.6) must be changed to: C + Cl as x + - co, and C --f C, as x +- co. In 
this case, the infinite series (1.16) begins with a term independent of T. 
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There are several possible ways of investigating problems (i) and (ii). The first 
method considered was an extension of that used by Taylor (1953), who noticed 
that (1.4) has an exact steady solution in which C is linear in x .  This solution can 
be written 

where u is a characteristic length-scale of the cross-section, and 

(1.10) & ( K g ) + : z ( K g ) =  V with Y = - a n d Z = - .  Y 
z 

U U 

The solution of (1.10) with the boundary condition (1.5) is not unique, but it 
becomes so if the further condition, 

- 
g(1) = 0, (1.11) 

is satisfied, and this condition is necessary if both sides of (1.9) are to have the 
same mean. Taylor now supposed that the above expression for C in tcrms of 6 
remains approximately true even when a 2 c / a x 2  + 0,  provided the cloud of con- 
taminant is sufficiently elongated. On substituting (1.9) into (1.8), the folIowing 
diffusion equation for e is obtained if a normally small term proportional to 
a3C/ax3 is neglected 

The solution of ( 1.12) is the Gaussian curve, 

(1.12) 

(1.13) 

In order to obtain a better approximation it is natural to suppose, by analogy 
with (1.9), that can be expressed in the form (Taylor 19546; GilI 1967) 

(1.14) 

where g“) is a function of Y and Z. When this expansion is substituted into (1.8),  
an equation for c is obtained, viz. 

It is possible to obtain the functions g@) by substituting (1.14) into (1.4), and 
then using (1.15) to eliminate all time-derivatives. Equations for the g@) are 
obtained by comparing coefficients of ar6/8xr.  The details of this procedure for 
Poiseuille flow are given in O’Hara (1969). The disadvantage of this method is 
that it does not give a direct expression for C or 6 until (1.15) has been solved 
to the required accuracy, and this will not be straightforward. 

A second method is to determine, in the manner described by Aris (1956), the 
values of the integral moments of G, defined in (1 .1) .  This technique has been 
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widely used in numerical work (Sayre 1968)) since a knowledge of the first few 
moments of C gives a great deal of information about C itself. Nevertheless, it has 
the same disadvantage as the first method. No direct expression is obtained 
for C, nor for 8. 

The method finally decided upon arose from the belief that the difference 
between C (or 8) and the Gaussian curve ( 1.13) is o(t-4) as t -+ 00 for a fixed value 
of xl t i .  This remark suggests that C can be expanded in an asymptotic series, 

f..., T T3 
C -  

where Y and 2 are defined in (1.10)) and 

T = i a z ) ,  MtD 4 X = x -  ( M :2a2t) ' 

(1.16) 

(1.17) 

Here M is an arbitrary dimensionless constant whose value will be chosen later 
for algebraic convenience. 

Plan of the paper 

In  $ 2 it is shown that the above series is consistent with the equation for C, and 
expressions are obtained for the functions C@). It is also shown that this expan- 
sion implies both (1.14) and (1.15). The work of $ 3  is primarily concerned with 
the effect of the initial distribution of C on the terms in the series. 

Some consequences of the theory for the widely studied case of Poiseuille flow 
in a circular pipe are discussed in $4. In  particular, graphs of 8, v2 and v3, obtained 
with the present theory, are compared with those obtained by previous writers, 
and an attempt is made to answer the important question of the range of times 
for which the asymptotic series is an adequate approximation. 

Section 5 deals with consequences of the theory for the model of turbulent open- 
channel flow, discussed above, in which V is logarithmic and K parabolic. 
Comparisons are made with Sayre (1968). 

One disadvantage of (1.16) for practical purposes is that the functions C@) 
cannot be found unless V and K are known accurately. However, it is shown 
in $ 6  that the asymptotic series for can be transformed into another series 
involving only quantities, like the integral moments, that can be determined 
without knowledge of V or K by integrat,ion from the observed distribution of 8. 
The need for such a series has been emphasized by Sayre. It turns out that the 
new series is well-known in statistical theory, and that it is valid even if C does 
not satisfy a differential equation provided another requirement is met. 

2. Derivation of the asymptotic series 
When the expansion (1.16) is substituted into the equation for C, and the 

coefficients of T-(p+l)  for each p are equated to zero, the following equations are 
obtained : 
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Since the terms in the series are independent, each C@) satisfies the same 
boundary conditions as C itself, viz. 

acb) 
(i) K -  = 0 on pipe walls, (ii) C@)+O as 1x1 -fa. (2.4) 

an 

The plan now is to determine the C@) successively, beginning with 00). A key 
property of the equation for C@), used frequently in this procedure, is that it 
cannot be solved with the boundary condition (2.4) (i), unless the right-hand sidc 
of the equation for C@), (2.3), has zero mean over the cross-section. This can be 
seen easily since, by Gauss’s theorem and (2.4) (i), 

The same situation is well known for solutions of Poisson’s equation with 
homogeneous Neumann boundary conditions. This property, applied to the 
equation for C@), gives conditions on C@--l) and C@-’), which, when satisfied, 
reduce much apparent arbitrariness. In fact, it  will be seen that each C@) is 
determined to within one arbitrary constant, and in 3 3 i t  will be shown how each 
of these arbitrary constants is determined by the initial distribution of C. 

The equation for C(O) has the solution, satisfying (2.4) (i), 

C(0) = f ( ” ( X ) ,  (2.5) 

is soluble, since = 0, and has wherefs is so far arbitrary. The equation for 
as solution, 

(2.6) 
df (0) 

C(1) = - g(l)( Y ,  2) +f‘l)(X) ,  ax 
where g( l )  is defined in (1.10) and (1 .1  l),  and f(’)(X) is so far arbitrary. Now, the 
equation for UZ) is, when expressions (2.5) and (2.6) are substituted, 

As explained above, this is only soluble if the right-hand side has zero mean, so 
that 
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If M ,  so far arbitrary, is chosen so that 

the solution of the equation for f0), satisfying (2.4) (ii), is 

exp ( - +X2), (2.9) f (0) = g(0 .0)  

where 
and the equation for C@) becomes 

is a constant. Thus C(O) is determined, apart from the constant 

It is useful in what follows to use the Hermite polynomials, H,(X), defined by 

H,(X) exp ( -  QX2) = ( -  1)" (L) ,exp - ( -  4x2). (2.10) 

- 
with (i) K(aq@)/an) = O on pipe walls, (ii) g@) = 0. (2.13) 

f@)(X) is at  the moment arbitrary, but is determined by the integrability condi- 
tion on the equation for 04), in the same way asf(O)(X) is determined by the 
integrability condition on the equation for U2). 

The equation for Cc3) can now be written down, and the condition for it to be 
soluble is a differential equation for f(l)(X)) similar to that obtained above for 
f(O)(X). This. equation has the solution, 

where ~ ( ~ $ 0 )  is an arbitrary constant. Thus C(l) is determined apart from the 
constants a(0.O) and a(l.O), and the equation for 03) can be solved in a similar 
fashion to that for 02). The expression for C(3) involves a function g ( 3 ) ( Y , Z ) ,  
similar to g(1) and g(2), satisfying the equation, 

(2.15) 
and boundary conditions like (2.13). 
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In  order t o  avoid complicating the body of this paper with purely mathematical 
details, these are discussed in appendix A. It is sufficient to say here that, on 
continuing the procedure described above, the form of C@) for any p can be seen 
and verified by induction. In  particular, it is found that 

It only remains to determine the constants and it is shown in $ 3  how 
this can be done. 
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Since 

Consistency with Taylor's work 

CCO) C(1) ( 3 2 )  
C - -  +-+-+..., T T 2  T 3  

(2.18) 

it  follows that, as T -+ 00, 

on returning to dimensional variables. This is exactly the expression (1.13) 
obtained by Taylor (1953) by the method discussed in 5 1. 

It may be shown further that the asymptotic series is consistent with expres- 
sions (1.14) and (1.15). On substituting for C@) in the asymptotic series and 
rearranging, it is found that 

exp ( - +X2) (a(', O)Hl + a(1, 1)H3) exp ( - &Xz)  c N 9'0) + T2 + *..) 

+ ... . (2.19) 

However, from (2.16) and (2.18), 

+ a(o, O)H0 exp ( - +X2)  
T 

( ~ ( 1 ,  @HI + a(1. 1)H3) exp ( - +X2) 

T2 
C N  

(a(2, O)H2 + 1)H4 + a(2. 2)Hs) exp ( - 4x2). . . . (2.20) 
T3 + 

Hence, combining (2.19) and (2 .20) ,  and returning to dimensional variables, 

which is simply (1.14). Equation (1.15) is a direct consequence of (1.14). For 
Poiseuille flow it has been verified that the coefficients in these series, obtained 
by the present method, agree with those found by O'Hara (1969). The details 
need not be given here. 

3. Effect of initial distribution of C on its asymptotic form 
The form of 8, shown in (2.20), gives a partial answer to question (i) of the 

introduction, how does 6 approach a Gaussian form as t - tco?  The question 
cannot be regarded as completely answered until the a@. O) are determined. It is 
obvious that these constants must be determined by the initial distribution of C, 
since all other conditions that C must satisfy are met by the asymptotic series 
of $2, whatever the a(r*O). Thus, as is to be expected, the complete answer to 
question (i) cannot be obtained until question (ii) is answered. 

O) is based on st consideration of 
the integral moments of C defined in (1.1). For large t these can be determined 

The method adopted here to determine the 
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easily from the asymptotic series, using the orthonormal property of the Hermite 
polynomials, 

and the following useful integral, 

/ ~ n ~ ~ ~ ,  exp ( - +XZ) ax = 

0 if m < n or (m-n)  isodd, 

(2n)g  m ! 
(m-n- 1) ( m - n - 3 )  ... 1 

(m-n) !  

if (m-n)  is even. (3.2) 

Now, assuming the asymptotic series can be integrated term by term, and 

i 
using the results above, it is easy to show that 

J --co 

Thus a ( O 5 O )  is proportional to the total quantity of contaminant. Further, (3.4) 
shows that the centre of gravity of the cloud is asymptotically stationary, and it 
is possible, and convenient, to choose the origin of the co-ordinate system so that 
xg = 0 asymptotically, Hence, 

a(l.0) = 0, 

and it follows, after some algebra, that 

(3.5) 

(3-6) 

(33. 
(3.7) 

Here, a(L 1) /a (0,O) = (-7- ( D / U a ) 2 K T ) } / M ,  as shown above in (2.17). Taylor's 
(1953) theory gives v2 = MU2a2t/D and v3 = 0. Thus, the present theory gives an 
additional contribution to the second moment which depends on the initial 
distribution of C,  and a non-zero skewness with two contributions. The first of 
these is linear in time and independent of the initial distribution of C; the second 
is constant and does depend on the initial distribution of C. 

The values of the integral moments can also be found from the equations 
developed by Aris (1956). It turns out that the values of the integral moments for 
large time can be obtained from these equations, in a form which shows the 
explicit dependence on the initial distribution of C. This is exactly what is 
required for the determination of the a@, O).  
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It is shown in appendix B how the asymptotic values of v2 and v3 can be 
obtained from the Aris equations. In  particular, for an initial distribution of C 
that is uniform over the cross-section, it is found that, as t + 00, 

- ( -  2 +  6R2- 3R4), 
24 

-- (31 - 18OR2+ 300R4- 200R6+ 45Rs), 
1 

11,520 

3,225,600 
(109+490R2- 3185R4+4900R6-3500Rs 

(3.8) 

(4.1) 

These expressions a,re consistent with (3.6) and (3.7) provided that 

and 

(3.10) 

(3.11) 

These expressions show that the effect of the initial distribution of G on its 
asymptotic form is likely to be negligible for the common situation when 
(Ua/D) B 1, unless one or more moments are initially very large. This is an 
important conclusion, and explains why expressions for vz(t) and v3(t), when C 
is initially non-uniform over the cross-section, are not given in this paper. 

for r > 3. 
Again, the details are not given here, because it will be argued later that the first 
three terms in the asymptotic series are usually an adequate approximation to c. 

The procedure outlined above can be used to determine the 

4. Applications of the theory to Poiseuille flow in a circular pipe 
The work of $ 2  and 5 3 has shown how the asymptotic form of C can be deter- 

mined for any flow in which V (  Y ,  2) and K (  Y ,  2) are known. It is difficult to see 
immediately what the implications of the theory for any particular flow are. 
Therefore, in this section and the next, some of the applications of the theory to 
two typical flows are discussed. These applications are chosen so that the pre- 
dictions of the theory can be compared with those made by others. 

In  this section the case of Poiseuille flow in a circular pipe is discussed. This 
example was that chosen by Taylor to illustrate his theory, and has since been 
used by Aris (1956) and Lighthill (1966), among others, to illustrate further 
aspects of the longitudinal dispersion process. Its great virtues are mathematical 
tractability and practical realizability . 

For Poiseuille flow with discharge velocity U ,  
V ( Y , Z )  = (1-2R2), K ( Y , Z )  = 1, 

where R = ( Y 2  +Z2)*. The functions g(”, g(2) and g(3) can be found from the 
defining equations ( l . l O ) ,  (2.12) and (2.15). They are 
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The values of these functions can be used to determine the constants a(?>@, which 
occur in C(l) and U2). As explained above, it is convenient to choose axes so 
that the centre of gravity of the cloud is at the origin as t 300, for then &O) = 0. 
Hence, using (2.17) and the expressions (4.1), 

Furthermore, for a distribution of C that is initially independent of Y and 2, 
(3.10) and (3.11) give 

The constant M is given by (2.8). For Poiseuille flow, 

(4.4) 

The asymptotic form of 6 when the initial distribution of concentration 
i s  uniform over the cross-section 

The expressions above, when substituted into (2.20), give the asymptotic form 
of c;' for any value of UalD,  provided the initial distribution of C is independent 
of Y and 2. However, for dispersion in liquids, UalD is normally very large 
(e.g. for KMnO, in water with a = 0.1 cm and U = 1 cm/sec, UalD N lo4) so that 
the expressions above simplify.? In  particular, d 2 , 0 )  and ~ ~ ( 3 . 0 )  become inde- 
pendent of the initial form of C, and 

M = -L 
Hence, substituting in (2.20), 

(4.5) 24'  

a(o,O)exp ( - =&X2) 
T 

1 H 3 ( X )  1 +>(---- H2(X)  41H,(X) H 6 ( X )  
[ " F X  T 720 107,520 -I- 5GjiiE) -t -1 ' 

C N  ___ 

(4.6) 
where, from (1.17) and (4.5), 

(4.7) 

The expression (4.6) can be written 

where 

c;' 4 1 2  " )+...I, (4.8) 
107,520 28,800 

t The assumption that (D/Ua)2 is negligibly small means that the effect of longitudinal 
molecular diffusion on C is neglected conipared with that due to the interaction between 
advection and lateral molecular diffusion. The flux of contaminant across a cross-section is 
of order U(  Ua2/D) (acjaz) when longitudinal molecular diffusion is neglected (see (1.9)), 
whereas that due solely t o  the latter effect is of order D(ac/ax). 
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The 2, are tabulated in Abramowitz & Stegun (1965); and table 1 gives the 
values of 

2 2, 412, 2, 
Z,, & and --+--- 

720 107,520 28,800 

for values of X between 0 and 5, and their values for negative X follow trivially, 
since 2, is even if n is even, and odd if n is odd. 

Figure 3 shows plots of 4(2/n) (?/a(ojO) against Dx/2Ua2 given by those terms in 
(4.8) up to and including that of order T-,, for four values of Dt/a2 ranging from 
0.125 to 1.000. For each value of Dt/a2 the Gaussian curve given by Taylor's 
theory (and, therefore, by the first term in the series (4.8)) is shown for com- 
parison. The units are chosen so that these graphs can be directly compared with 
those in Lighthill (1966). 

X 0.00 0.20 0.50 1.00 1.50 

1 3.99 x 10-1 3.91 x 10-l 3.52 x 10-1 2.42 x 10-l 1.30 x 10-1 
2 0 1-93 x 10-3 4.03 x 10-3 4.03 x 10-3 1-21 x 10-3 
3 1.10 x 10-4 0.71 x 10-4 - 1.00 x 10-4 -3.18 x 10-4 - 1-41 x 10-4 

X 2.00 3.00 4.00 5.00 

1 5.40 x 4.43 x 1.34 x 1-49 x 
2 - 8.93 x - 6-65 x - 5.79 x - 1.36 x 
3 1.43 x 1-15 x 6.63 x - 0.59 x lo-' 

TABLE 1. Values of the functions of X appearing in (4.8). Row 1 gives values of Z , ( X ) .  
Row 2 gives values of Z3(X)/120. Row 3 gives values of Z,(X)/720+41Z4(X)/107,520- 
Z,(X)/28,800. 

Leaving aside for the moment the question of the values of Dt/a2 for which the 
series is an adequate approximation, it is worth noting several points : 

(i) The asymmetry of is evident for Dt/a2 = 0.125 but decreases as Dt/a2 
increases. However, it is still noticeable at  Dt/a2 = 1.000. The asymmetry of 6 is 
due only to the term in 2, in the series (4.8), and it is this term which eventually 
gives the greatest correction to the Gaussian curve. 

(ii) One effect of the term in (4.8) proportional to T-, is to place the peak of (? 
slightly behind the centre of gravity. This is consistent with the qualitative 
picture of figure 2 ( c ) .  

(iii) For practical purposes there is no difference between the Gaussian curve 
and that given by (4.8) for values of Dt/a2 greater than about 1. 

(iv) The value of 6 predicted by the series falls off to zero more rapidly than 
the corresponding Gaussian curve as I Dx/2Uu21 increases. (Indeed, for 
Dt/a2 = 0-125, the series predicts that 6 is actually negative near x = - Ut! )  
This tendency is expected because, when longitudinal diffusion is neglected, the 
concentration cannot be non-zero upstream of a point moving with the maximum 
fluid velocity + U ,  nor downstream of a point moving with velocity - U.  Thus 
6 = 0 for 1x1 > Ut, i.e. for IDx/2Ua2[ > Dt/2a2. The Gaussian curve does not 
satisfy this condition so that B must fall to zero more rapidly than the Gaussian 
curve. 
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Relation to work by Lighthill (1966) 

The point discussed in (iv) above is among those considered by Lighthill (1966), 
who derived an expression for 6 valid for Dt/az less than about 0.1 and for values 
of Dx/2Uu2 > 0. The form of 6 given by Lighthill’s theory falls off rapidly, from 
a uniform value, to reach zero at x = Ut. For values of Dtla2 > 0-1, Lighthill 

0- 1 0.2 

0- 1 0.2 0.1 0.2 

FIGURE 3. A comparison of given by the present theory with that given by Taylor’s theory 
for Poiseuille flow, and various times: __ , throo terms of the present series; ------, the 
Gaussian curve of the same area. 

suggested that the actual form of lies between that predicted by his own and 
Taylor’s theories, becoming indistinguishable from the latter near Dt/a2 = 0-5. 
Figure 4 shows the forms o f 6  given by Lighthill’s theory, Taylor’s theory and the 
present theory for Dt/a2 = 0.125. Lighthill argues that his theory gives a peak 
value of G‘ that is too low for Dt/a2 = 0.125, and that the Gaussian curve of 
Taylor’s theory does not fall to zero rapidly enough. 

For Dt/a2 = 0.125, the form of G‘ predicted by the present theory has two main 
faults. First, does not fall to zero rapidly enough, and secondly the curve is too 
‘spiky’ near the centre of gravity (for, as shown in figure 2 ( b ) ,  the initial effect of 
Poiseuille flow is to give a G’ which is uniform for 1x1 < Ut) .  
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Nevertheless, the curve given by the present theory is asymmetric and it must 
be so, as the argument of $ 1  shows. Neither Taylor’s nor Lighthill’s theory 
predicts this, for Lighthill’s theory is based on the fact that, for small values of 
Dt/u2, the form of near 1x1 = Ut can be found by neglecting the presence of the 
pipe walls altogether. As has been seen in the introduction, it is just the inter- 
action of the diffusing cloud with the pipe walls that causes the development of 
asymmetry in Poiseuille flow. 

10 

0.10 

Dx12 Uaz 

FIGURE 4. A comparison of the shapes of the ?? - x curves for Poiseuille flow with Dtla2 = 0.125 
given by various theories:---, three terms of the present series; ------, the Gaussian curve of 
the same area; . -. -. - , Lighthill’s (1966) theory. 

The second and third integral moments 

The work above suggests that the present theory is not an adequate approxima- 
tion for Dt/a2 = 0.125, but that it may be so for slightly higher values. In order 
to investigate this, the values of v2(t) and vg(t) given by the present theory are 
compared with the exact values given by solving the appropriate moment 
equations. For a case when 

and when longitudinal molecular diffusion is neglected, it is shown in appendix C 
that 

C(Z, Y? Z , O ) K  4-4 

rDt 1 1 

rDt 17 1 

where a, is the nth non-zero root of J1(x) = 0. The values of v2(t)  and v3(t) given 
by the present theory are easily found from (3.8) and (3.9) to be the expressions 
(4.9) and (4.10) with the infinite series omitted. Figure 5 compares the exact 

22 P L M  43 
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values of v2 and v3 with those given by the series. Naturally, the theory agrees 
with the exact values as Dt/a2+ 00, since such agreement has been demanded in 
finding the values of and ~ ~ ( 3 9 ~ ) .  But figure 5 shows that v2 and v3 are given 
with greater than 95 yo accuracy, by the asymptotic series for values of Dt/a2 
greater than about 0.25. Table 2 gives the exact and approximate values of the 
absolute skewness A,, defined in (1.2).  Of course, the Gaussian curve has A, = 0, 
whatever Dtla2. 

Dt/a2 0.02 0-05 0.10 0-15 0-20 0-50 1-00 5.00 
Exact A, -31.19 -3.97 -0.40 0.13 0.27 0.30 0.25 0.11 
Approx. A, - - -0.07 0.00 0.24 0.30 0.25 0.11 

TABLE 2. Values of A, in Poiseuille flow. A dash indicates that the present series gives 
a negative value of vz so that A, is not defined. 

2x  

v2/( Uaz/D)2 

10-2 

10-2 

t 
FIGURE 5 .  A comparison of the values of v2(t)  and v3(t)  for Poiseuille flow given by three terms 
of the present series with the exact values: -, exact values; -. -, values given by three 
terms of the present series. 

Concluding remarks 

It is reasonable, therefore, to expect that in Poiseuille flow the first three terms 
of the asymptotic series (4.8) give an adequate approximation to for values of 
DtIa2 greater than about 0- 2. In particular, the series predicts the values of v2 and 
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v3 to within 95 yo for Dt/a2 > 0.25. It is only in the event that information about 
higher moments than the third is required that more terms must be taken in 
the series. 

5. Applications to a model of turbulent open channel flow 
One of the commonest applications of the theory of longitudinal dispersion 

has been to turbulent flows in open channels, rivers and canals (Elder 1959; 
Fischer 1966; Sayre 1968). The simplest model of such a flow is discussed in § 1, 
and illustrated in figure 1. In  this section, the velocity scale U and the length 
scale a of the general theory are chosen to be the friction velocity u* and the 
depth of the channel h .  Then, in the model, 

(5.1) 
V(Y,Z)=-( l f logY) ,  1 with Y = -  Y 

K h’ 

where K is von KArmAn’s constant equal to 0.42 approximately. It will also be 
assumed that the turbulent mixing can be described in terms of an eddy dif- 
fusivity, and that Reynolds’s analogy holds. In this case, 

D = i ( K U + h )  and K( Y ,  8) = 6Y( 1 - Y). ( 5 . 2 )  

There are many well-known faults with this model. The velocity near the wall in 
the viscous sublayer is not given by (5. l), there is no real justification for assuming 
an eddy diffusivity exists, let alone that Reynolds’s analogy holds, and the 
motion in a channel is not independent of 8. However, the model is widely used 
by engineers, and numerical values of v2 and v3 are available for comparison with 
values predicted by the present theory (Sayre 1968). 

Calculation of v 2  and v3 from the theory 

From (3.8), it follows that, as t+m, 

where g(l)  satisfies the appropriate form of ( l . l O ) ,  viz. 

d Y  d ( Y ( 1 - Y ) -  =-(l-tlogY}, i K  

and, from (2.8), 

The solution of (5.4) which satisfies g(l) = 0 is 
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The integral occurring in (5.6) can be expressed in terms of the tabulated 
dilogarithm (Abramowitz ~ & Stegun 1965). Table 3 gives the values of Bicg(4 From 
these values, the means Vg(l) and (g(1))2 are found to  be given approximately by 

~ 

~ 0-4041 0-1885 
V g ( l ) = - F  and is"')"=,,,. (5 .7)  

6 ~ Y l o g ~  Yg(l)( Y) 

Y 6Kg(')(Y) 36~~{g(l)(  Y ) } 2  (1 - Y) 
0.00 1~00000 1~00000 0~00000 
0.05 0.75970 0.57714 0.35883 
0.10 0.65478 0.42874 0.38573 
0.15 0.53565 0.28692 0.34021 
0.20 0.42986 0-18478 0.27837 
0.25 0.33354 0.1 I125 0.21367 
0.30 0.24444 0.05975 0.15186 
0.35 0.161 15 0.02597 0.09564 
0.40 0.08265 0.00683 0.04626 
0.45 0.00822 0-00007 0.00857 
0.50 - 0.06269 0.00393 - 0.03012 
0.55 -0.13054 0.01704 - 0.05703 
0.60 - 0.19566 0.03828 - 0.07659 
0.65 - 0.25832 0.06673 - 0.08903 
0-70 -0.31880 0,101 63 - 0.09460 
0-75 - 0.37728 0.14234 - 0.09366 
0.80 - 0.43392 0-18829 - 0.08644 
0.85 - 0.48890 0.23902 - 0.07316 
0.90 - 0.54231 0.29410 - 0.05418 
0.95 - 0.59428 0.35317 - 0.02964 
1.00 - 0.64493 0.41593 o*ooooo 

TABLE 3. Values of certain functions of Y used in the discussion of dispersion in turbulent 
open-channel flow. The values in the last column are used for the evaluation of 

V{g(1)}2 = 1 f' (1 +log Y) {g'"}2 dY; 
K O  

for, on integration by parts, it is seen that 

dgil' 1 Y 
since - 

d Y  6 ~ 1 - Y Y '  

(In fact, the value of v) can also be evaluated exactly in the manner described 
by Elder 1959.) Thus, from (5.3), 

h3 

The first term in the expression is the effect of longitudinal diffusion, and the 
second is that given by Taylor's theory, resulting from the interaction between 
lateral diffusion and convection. The ratio of these two terms is 
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As in Poiseuille flow, the ratio of the two terms is of the order of the inverse 
square of the Peclet number, and it is the interaction term which dominates. 
The other contributions to v2(t)  are independent of time. One is the effect of the 
initial distribution of C (here, as in the general theory, assumed uniform over the 
cross-section), and the other is the result of the interaction between lateral dif- 
fusion and convection. Since 0 . 3 7 7 1 ~ ~  M 12, it is the second term which is most 
important, unless the cloud of contaminant is initially very elongated, 

For an initial distribution of contaminant of the form, 

all moments initially vanish. Thus, as t -+ co, and neglecting 2(Dt/h2), 

v2(t) 4.849 Dt 
0.078 . ---N-- -- 

h2 K4 (h2  ) (5.10) 

Sayre (1968) evaluated vz(t)/hz for this particular initial distribution on a com- 
puter. He found that for Dt/hz greater than about 0.2 the value of v2(t)/h2 was 
given by 

(see figure (3.9) of Xayre’s paper). The agreement between this and (5.10) is 
excellent. 

One aspect of the expression ( 5 . 3 )  for v2 is worth mentioning in the context of 
turbulent diffusion theory. For an initial distribution of contaminant of the 
form (5.9), it  follows that, as t - tco,  

___ 
say, where to > 0, since M and {g(1)}2 are positive whatever V .  However, the 
theory of turbulent diffusion predicts that, as t -+a, 

where R(t)  is the statistical mean of the product of the velocities of a fluid particle 
at two times separated by an interval (Batchelor 1966). Thus, the assumption 
of an eddy diffusivity implies a positive value of 

r m  

(The significance of 

in the present context is well known.) 
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A further check of the theory is provided by a calculation of v3(t) which, for 
large t, is given by (3.9) and (2.17). Neglecting tho constant term, 

(5.11) 

The value of {v)- (x2/36) K ? >  can be found from the expression above for g(l), 
because, from (2.12), g@) satisfies 

On multiplying this equation by g(l), integrating from 0 to 1, and integrating the 
left-hand side twice by parts, it follows that 

Thus, 

~ 

The value of Kg(l)is found exactly to be - 1 / 2 1 6 ~ ;  and, from the values in table 3, 
it  is found by Simpson’s rule that 

V{g(’)}’ = - 0.00346/~~.  
Hence, from (5.1 I), 

(5.12) 

Again the two terms in this expression represent respectively the effect of longi- 
tudinal diffusion and the interaction between lateral diffusion and convection, 
and it is the latter which is dominant. For large t, the value of the skewness A,, 
defined in (1.2), is 

using (5.10) and (5.12). Sayre (1968) found that, for Dt/h2 9 0.1, A, was approxi- 
mately - 0.42/(Dt/h2)9. The agreement of the values of the constants is excellent. 

Concluding remarks 

The value of a(5 l) has been found above so that, substituting in (2.20), viz. 

1 n 
and, writing as before Zn = - ( ) exp ( - +Xz), 

(27r)* dX 

where 

(5.13) 

(5.14) 
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Further terms in this series can be calculated by finding g(" and gt3) in the manner 
described above. It seems likely, in view of the accuracy of v2 and v3, that three 
terms of the series will provide an adequate approximation to 6 for values of 
D t / P  greater than about 0.2. 

6. Expression of C by an Edgeworth series 
The first three terms of the series (2.20) provide an adequate approximation 

to 6 for times which are not small. Unfortunately, the terms in this series cannot 
be evaluated if V and K are not known aocurately, as occurs in many practical 
cases. It is the purpose of this section to show that the series (2.20) can be modified 
to one whose terms involve the integral moments, and these can be found by 
integration from the observed distribution of 8. 

The first step in this modification is taken to simplify later algebra. The value 
of v2 for large t is given in (3.6), and it can be seen that a change in the origin of the 
time-scale can be made so that O) = 0, and 

With this change in the origin of the time-scale, the value of X ,  given by (1.17), 
can be written 

Thus, the change in the origin of the time-scale is equivalent to the statement 
that 6, regarded as a function of X, has zero mean and unit variance. It is this 
fact that causes simplification (as is well known in statistical theory). 

(6.2) x = 

When a(l,O) = d 2 s 0 )  = 0, the series (2.20) reduces to 

do* O) exp ( - 8X2)  
C N  T [ 1 + ( % H ~ ]  

The plan now is to express the constants in this series in terms of the integral 
moments of 8. For example, the expression for v3, given in (3.7), shows that 

Similarly, it is easy to show by integration that 

and 
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The expressionson theright of (6.4,) (6.5) and (6.6) are respectively the coefficients 
of H,, H4 and H, in the series for c. Furthermore, the combinations of the integral 
moments appearing on the left of these three equations are just those which 
define the absolute cumulants A, of c. The definition of A, has been given above 
in (1.2), and the definition of A, will be given later in this section. For the moment 
it is sufficient to note that 

and that the cumulants are particularly useful in measuring the departure of 6 
from a Gaussian form, since all cumulants (except A,, which is 1) vanish for the 
latter. 

The other constants appearing in the first few terms of (6.3) can also be 
expressed in terms of A,, A, and A,. From (2.17) and (6.4), 

Similarly, 

Thus, substituting in (6.3), 

+ {ih4 H 5  + A d 3  

+ 0 ( ~ - 4 ) 1 ,  (6.8) 

H7 + i-2'd33HJ 

where the terms in each curly bracket are of O(T-l) times those in the preceding 
curly bracket. 

The series (6.4) is well known in statistical theory as Edgeworth's form of the 
Gram-Charlier series of type A (Kendall & Stuart 1958, §6.18), and has been 
used in a discussion of sea waves by Longuet-Higgins (1963). 

Alternative derivation of the Edgeworth series 

The method of derivation of (6.4) relies heavily on the form of the series (2.20), 
which in turn relies on the assumption that the diffusion of contaminant can be 
described by a scalar diffusivity. Since this assumption is not known to be well 
founded for turbulent flow, an alternative derivation of (6.4), relying on different 
assumptions and very close to that used in statistical theory, may be of interest. 
The method is similar to that used by Aris (1958) for derivation of the Gram- 
Charlier series of type A, which, without Edgeworth's modification, has the 
disadvantage that the terms do not decrease regularly as T increases. 

Define $(k, t )  as a Fourier transform of 6 ( X ,  t ) ,  viz. 
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Thus, 4 is the characteristic function of 8, and the cumulants A, of c are defined 
by the equation (Kendall & Stuart 1958, $3.12), 

(ik)2 (ik)3 (ill), 
log$(k,t) = --+ --Aha+ ...+- A,+ .... 

2 !  3! n !  
The inverse of (6.9) is 

(6.10) 

(6.11) 

J --to 

Hence, using (6. lo), 

(6.12) 

exp(-ikX-&k2)dk. 
24 120 

Y --m 

Now this expression can be simplified if the assumption is made, consistent with 
(6.4), (6.5) and (6.6), that, as t- tco,  

A, = O(t1-4.). (6.13) 

The exponential in the integrand of (6.12) can be expanded, and, grouping terms 
of the same order in t ,  it follows that 

Thus, since 

J - m  

and, from (3.3), 

C d X  = __ c ax = a@, O'( 27r)*/T, 

then (6.14) reduces to (6.8). 
The attractive feature of this second derivation is that all the details involving 

'v and the diffusion mechanism, needed to establish (2.20), are shown to be 
equivalent to the assumption (6.13). It can be shown that the values of the 
cumulants obtained from (2.20) are consistent for all n with (6.13), and it is 
natural to  ask whether (6.13) can be justified for more general flows. So far, no 
such justification is known, but perhaps one may be forthcoming. 

A further possibility is that the second derivation of the Edgeworth series may 
be adaptable to cases of diffusion in flows like turbulent jets in which the 
statistical properties of the velocity of a marked fluid particle are not constant. 

Application of the Edgeworth series to practical flows 

It is useful to outline the steps that are necessary to fit an observed distribution 
of C by the Edgeworth series. 

(i) Determine the centre of gravity of c and choose axes so that this is zero. 
(ii) Determine v2 by integration, and hence the values of X given by (6.2). 
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(iii) Determine v,, v, and v, by integration, and hence A,, A, and A, given 

(iv) Determine Q, the total area under the e - x curve and hence a(O8 @IT, since 
in (6.7). 

All quantities appearing in (6.8) are now known. 
This procedure has been applied to the observed distribution of 6 shown in 

figure 7 of Taylor (1954a), and the results are presented in table 4. The data in 
the first two columns of this table were read off the figure, it being assumed that 
C was zero at the extreme points recorded. The last three columns are the values 

~- ~~ 

First Second Third 

1.200 0.00 0.00 0.00 0.00 
1.225 0.03 0.02 0.00 0.01 
1.250 0.06 0.04 0.02 0.03 
1.275 0.10 0.10 0-07 0-08 
1.300 0.16 0.24 0.20 0.19 
1.325 0-29 0.48 0.46 0.42 
1.350 0-66 0-88 0.91 0.85 
1.375 1.56 1.42 1.51 1.46 
1.400 2.31 2.02 2.16 2.15 
1.425 2.81 2-56 2.69 2-74 
1.450 3.24 2.88 2.94 3.02 
1.475 2.86 2.88 2.82 2.91 
1.500 2.40 2.54 2.41 2.46 
1.525 1.67 2.00 1.86 1.84 
1.550 1.21 1-39 1.30 1.25 
1.575 0.80 0.86 0.83 0.78 
1.600 0.52 0.47 0.49 0.46 
1.625 0-31 0.23 0-27 0.26 
1.650 0.15 0.10 0.13 0.14 
1.675 0.06 0.04 0.06 0.07 
1-700 0.04 0.01 0.02 0.03 
1.725 0.01 0.00 0.01 0.01 
1.750 0.00 0.00 0.00 0.00 

TABLE 4. Application of Edgeworth series to data from figure 7 of Taylor (1954a). 
Calculated values are xg = 1.462, v$ = 0.072, h, = 0.214, h, = 0.336, do,O)/T = 2.924. 

X c approx. approx. approx. 

calculated from (6.8), taking successively one, two and three terms in the series. 
It will be seen that the second and third approximations are clearly better than 
the first, although there are still points where agreement could be better. How- 
ever, there are errors arising from experiment, errors made in reading values 
from the figure and errors arising because the curve shown in Taylor’s paper is 
of C measured as a function of time as it passed the fixed place of observation, 
and not of 6 as a function of x for a given time. It is clearly necessary to test 
whether (6.8) provides an adequate approximation to by considering more 
detailed sets of data; but these are not immediately available. 
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Appendix A. The values of C(")(X, Y ,  2) 

n is given by the natural extension of (2.16), and can be written 
In 5 2 the values of On) are given for n = 0, 1,2,3. The value of C(n) for arbitrary 

where 

The function g"( Y ,  2) for arbitrary s satisfies an equation which is an extension 
of the equations defining g(l) and g@), viz. 

with the determining conditions, 

(i) K(ag(s)/an) = 0 on pipe wall, and (ii) g(s) = 0 for s 2 1. (A4) 

The value of g(O) is of course 1. 
As stated in the text, the constants d r s S )  for s 2 1 are linear functions of the 

a@>O) and are determined by the integrability conditions on the equations for 
the C@). The values of for 1 Q Y, s Q 3 are given in (2 .17) .  For all integers 
Y and s, the value of can be written down as follows. Define the constants 
p(q) by 

p(q) = P - ( & ) 2 K ? ) .  (A 5) 

Then, for r 2 s 2 1, 
1 (r-5) 

s! MS m=O 
(A 6) ah s) = __ c ( - 1 ) m  &-s-m, 0) {Z;/j(qdp(qa) . . . p'qd}, 

where the summation in the curly brackets is over all qi such that, given m, 

All the results given here can be verified by induction. 
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Appendix B. The values of v2 and v3 as t -+ 00 

This appendix shows how the results (3.8) and (3.9) can be obtained. Let the 
Laplace transform of C(x,  y, x ,  t )  be e ( x ,  y, x,p). Then fi satisfies the following 
equation obtained by transforming (1.4): 

where Y and Z are defined in (1 .  lo), and W0) is the initial distribution of concen- 
tration. Now, Iet 8 be the Fourier transform of 8, so that 

say. It is also convenient to define 
m 

%A(’) = xn@(O)dx. 
--m 

On taking the Fourier transform of (B l ) ,  and equating coefficients of (ik)”, an 
equation for en is obtained, which is the Laplace transform of the equation for C, 
obtained by Aris (1956). Aris showed that, as t + co, 

C,cc tin, if n is even, and Cncc t&+l), if n is odd, 

so that 6, has the following development near p = 0: 

The equation for eo is 

Now, from (B 4), 

When this is substituted into (B 5 )  and coefficients ofp+ are compared, equations 
are obtained for fro). However, the solution of (B 5) is particularly simple for the 
special case when W0) (and so each gg)) is independent of Y and 8. This means 
the initial distribution of C is uniform over the pipe cross-section. Under these 

(B 6) 
conditions, 6 - g(0) 

0 -  0 l P *  

The equation for el is, on using (B 6), 

Now, from (B 4), 
(1) e, N f-1 +fp + f p p  + . . . . 
P 
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Thus, equating the coeflicient of p-l  in (B 7) to zero, 

349 

with solution, satisfying the zero normal gradient boundary condition, 

The coefficient of po in (B 7) gives the equation, 

and the right-hand side of this equation must have zero mean, for the reason 
discussed in $2.  Hence, f3 = %?io), so that the constant in the expression for fl'i 
is %?Io). If axes are chosen so that %i0) = 0, then 

Ua2 
f = - - g ( 0 )  (1) D 0 9 ,  

and the equation for reduces to  

The solution of this equation can be written symbolically 

fil) = const. - --q0 ua4 ( 0 )  { I g (1) }, 
0 2  

where (IgCl)) satisfies 

The constant in this expression must be zero if the equation for fj'' is soluble. 
Hence, 

Similarly, 

where { 1 2 q ( l ) }  is related to {Ig(l)} in the same way as {Iq(')> is related to g(1). Since 
g(l) = { IT ) }  = { I T }  = 0, it follows, from (B 8), (B 9) and (B lo), that 

since Wio) = 0. Hence, for all t ,  

- 
El = 0, 

- =la xCdx = O+x, = 0. (B 11) 
-m 

The equation for 6, is found to be 
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The values of the functions appearing in the expansion of 6, about p = 0 can be 
found in the way described above for those connected with el. The results are 

I 

Hence, on taking the mean over the cross-section, 

so that, as t + m ,  
- 
C ,  MU2a2t ( (Yj-2 -) 

vz( t )  = __ N ~ + v,(O) - 2 ~ V{Ig"'} . gp D 
However, since 

on using the defining equation of q(l), (1.10). Thus, substituting in (B 14), 

which is just (3.8). 
The equation for e3 is 

The value of e3 can be found by taking the mean of this equation, using the 
results above for the terms in el and Q2. On taking the Laplace transform of this 
value, it is found that, as t -+ m, 

v3(t)  = f5&q) 
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The constant term in this expression can be simplified by the same processes that 
were used in going from (B 14) to (B 15). It is easily shown that 

_ _ _ -  
V( lg0)  = g(I)g(Z), 

which is just (3.9).  

Appendix C. The exact values of v2(t) and v3(t) in Poiseuille flow 

flow in which, with R = ( Y2 + Z 2 ) t ,  
This appendix shows how v2(t)  and v3(t) can be obtained exactly for Poiseuille 

V (  Y ,  2) = 1 - 2R2 and I<( Y ,  2) = 1. 

The only case that is considered is that when 

so that v,(O) = 0, and the method adopted is to solve the appropriate moment 
equations of h i s .  These can be solved in the manner described by Aris (1956), but 
the method chosen here is to  solve the Laplace transforms of the moment equa- 
tions. This method gives the results (4.9) and (4.10) directly. 

V('O)(X, Y ,  2) K S ( X ) ,  (C 1) 

The equation (B 7 )  for el, with the values of V and K given above, is 

since Via) = 0. The solution of this equation, satisfying 

is easily verified to be 
d8,ldR = 0 a t  R = 1, 

where q = (P,.2/0)2', 

and I, and Il are modified Bessel functions. 
The equation (B 12) for 6, is 

and the solution of this equation, satisfying d6,fdR = 0 at R = 1, can be verified 
to be 
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The mean of this equation over the cross-section gives 

4 32 161,fq) 

and it may be shown that the inverse Laplace transform of this is (4.9). 

this equation, it is found that 
The equation for e3 is given in (B 16). On taking the cross-sectional mean of 

p& = 3 u v 3 ,  
__ 

since = 0. On multiplying (C 5 )  by V ,  and integrating, it is found that 

( ? , = 3 2 - -  ( 3 3 7 )  _ _ -  (p;2)2 

and the inverse Laplace transform of this is (4.10). 
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